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ABSTRACT

As data-driven methods are becoming pervasive in a wide variety
of disciplines, there is an urgent need to develop scalable and sus-
tainable tools to simplify the process of data science, to make it
easier for the users to keep track of the analyses being performed
and datasets being generated, and to enable the users to understand
and analyze the work�ows. In this paper, we describe our vision of
a uni�ed provenance and metadata management system to support
lifecycle management of complex collaborative data science work-
�ows. We argue that the information about the analysis processes
and data artifacts can, and should be, captured in a semi-passive
manner; and we show that querying and analyzing this information
can not only simplify bookkeeping and debugging tasks but also
enable a rich new set of capabilities like identifying �aws in the
data science process itself. It can also signi�cantly reduce the user
time spent in �xing post-deployment problems through automated
analysis and monitoring. We have implemented a prototype system,
ProvDB, on top of git and Neo4j, and we describe its key features
and capabilities.
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1 INTRODUCTION

Data-driven methods are becoming increasingly common in a vari-
ety of communities, including sciences, education, economics, and
social and web analytics. This has resulted in a pressing need for
sustainable and scalable tools that facilitate the end-to-end data
science process (lifecycle) by making it easy to maintain and share
time-evolving datasets; to collaboratively clean, integrate, and ana-
lyze datasets; to perform introspective analysis to identify errors
in the data science pipelines; and to learn from others. This is es-
pecially challenging as the collaborative data science lifecycle is
often ad hoc, typically featuring highly unstructured datasets, an
amalgamation of di�erent tools and techniques, signi�cant back-
and-forth among team members, and trial-and-error to identify
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the right analysis tools, models, and parameters. Although there is
much prior and ongoing work on developing systems to perform
speci�c data analysis tasks such as wrangling, training, serving,
A/B testing, etc., support for lifecycle management is largely absent
in today’s data science platform o�erings. This is rapidly becoming
a crucial omission since a large and increasing fraction of the over-
all human attention during the analysis process is being devoted to
these issues. In most cases, there is no easy way for the users to cap-
ture and reason about ad hoc data science pipelines, many of which
are often spread across a collection of analysis scripts. Metadata
or provenance information about how datasets were generated, in-
cluding the user inputs, the steps taken by the user, the scripts used
and their versions, and/or values of any crucial parameters, is often
lost. Similarly, it is hard to keep track of any dependencies between
the artifacts. As most datasets and analysis scripts evolve over time,
there is also a need to keep track of their versions over time; using
version control systems (VCS) like git can help to some extent, but
those don’t provide su�ciently rich introspection capabilities.

Lacking platform support for capturing and analyzing such life-
cycle provenance and metadata information, practitioners are re-
quired to manually track and act upon it, which is not only tedious,
but error-prone. For example, (a) they must manually keep track of
which derived datasets need to be updated when a source dataset
changes – they often use spreadsheets to list parameter combina-
tions tried out when applying a machine learning model; (b) debug-
ging becomes much harder; e.g., a small change in an analysis script
may have signi�cant impact on the �nal result, but identifying that
change may be non-trivial, especially in a collaborative setting;
(c) “repeatability” can often be very di�cult, even for the same
practitioner, because of an amalgamation of constantly evolving
tools and datasets being used, and a lack of easy-to-use mechanism
to keep track of parameter values used in the lifecycle; (d) critical
errors may be hidden in the mess of artifacts that cannot be easily
identi�ed; e.g., a data scientist may erroneously train on the test
dataset due to mistakes while creating the dataset splits.

This paper describes a system, called ProvDB, for uni�ed man-
agement of all kinds of metadata about collaborative data science
work�ows that gets generated during a project lifecycle; this in-
cludes (a) version lineages of data, scripts, and results (collectively
called artifacts), (b) work�ow provenance on derivations among
artifact snapshots, (c) important context metadata about artifacts,
derivations and the project, (d) data provenance of artifact content
which may or may not be structured. Our hypothesis is that by
combining information about the lifecycle in one place, and making it
easy for practitioners to analyze or query it, we can enable a rich set
of functionality that can simplify their lives, make it easier to identify
and eliminate errors, and decrease the time to obtain actionable in-
sights. This is hardly a new observation, and there has been much
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prior work on capturing and analyzing provenance in a variety of
communities. However, there is still a lack of practical systems that
treat di�erent kinds of provenance and metadata information in a
uni�ed manner, and that can be easily integrated in the lifecycle of
a data science project. At the same time, the widespread use of data
science has brought to the forefront several important and crucial
challenges, such as ethics, transparency, reproducibility, etc.; we posit
that �ne-granularity provenance is a key to addressing them.
Challenges & Desiderata: There are however several crucial sys-
tems and conceptual challenges in fully exploiting those opportuni-
ties. First, it is hard to de�ne a schema for the provenance/metadata
information a priori, and di�erent users or di�erent lifecycles may
wish to capture and analyze di�erent types of such data. Second, we
must be able to ingest the information with minimal involvement
from the users and allow them to continue using their preferred
tools. Third, we need to develop a set of declarative query abstrac-
tions to use such data including: (a) explanation queries to help in
understanding the project, or look for origins of speci�c data items,
etc., (b) introspection queries that attempt to identify �aws from
the lifecycle history (e.g., p-value hacking), (c) continuous monitor-
ing to quickly identify anomalies during a lifecycle (e.g., concept
drifts where a learned model doesn’t �t new data; changes to input
data formats). Finally, we expect many e�ciency and optimization
issues that will arise as the volume of the captured data increases.
ProvDB: ProvDB is being developed together with DataHub [6],
a dataset-centric platform for enabling collaborative data analytics
that supports managing a large number of datasets, their versions
over time, and derived data products. Currently, ProvDB is built
on top of git, widely used by practitioners due to its intuitive
support for collaboration, and Neo4j, a graph database (any prop-
erty graph database could be used as the backend). As DataHub
matures, we plan to integrate ProvDB with it in future. ProvDB
adopts a ‘schema-later’ approach, where a small base schema is
�xed, but arbitrary semistructured information can be added as
JSON data. It features an extensible provenance ingestor framework,
and a suite of built-in provenance ingestors for command-line us-
age, to transparently collect provenance and metadata. To address
the third challenge, we are working on developing a high-level
DSL that enables a large range of such queries; however, formal-
izing some of these queries (e.g., identifying p-value hacking, or
ethics issues) itself is a major challenge. Our prototype features a
web browser-based visualization tool for inspecting and querying
the provenance information, supports querying the information
directly using Cypher (Neo4j query language), and also supports a
limited form of continuous monitoring.

2 PRIOR WORK

Provenance Systems: There has been much work on scienti�c
work�ow systems [15] over the years, with some of the prominent
ones being Kepler [7], Taverna [13], VisTrails [9], Chimera [14], to
name a few. They often center around provenance management for
a well-de�ned work�ow, but cannot easily handle fast-changing
pipelines, thus typically are not suitable for ad hoc data science
projects, as clear established pipelines may not exist except in the
�nal, stable stages. Moreover, they typically require speci�c compu-
tational environments which impose a high overhead on users.

Provenance can be captured at di�erent granularities for com-
puter aided tasks [4, 15], all of which have useful utilities for the
users. Work�ow provenance is often referred to as coarse-grained
and may include: a) prospective information about the work�ow
de�nition, b) retrospective information about the work�ow execu-
tion, c) metadata about steps and datasets in a work�ow, and d) I/O
lineages among steps [24]. On the other hand, in data�ow systems
(e.g., SQL, Pig Latin, Spark), data provenance at record level is stud-
ied [1, 4, 11]. Previous e�orts, such as Burrito [16], Reprozip [5],
noWork�ow [22], Lipstick [1], etc., proposed techniques to ingest
and represent work�ow and data provenance in speci�c settings.
ProvDB aims to combine the two together with version lineages
and provide uniform platform for collaborative data science work-
�ows. It is complementary to, and can utilize prior techniques to
capture provenance; our focus is primarily on how to exploit that
information and provide richer introspection capabilities.
Collaborative Data Science Systems:Many researchers �nd VCS
(e.g., git, svn) and related hosting platforms (e.g., GitHub) much
more appropriate for their daily needs. Those provide transparent
support for versioning and sharing, without imposing constraints
on types of data processing tools used. Though they keep version
lineage among committed artifacts, these systems are typically too
‘low-level’, and have very little query facilities or ingestion capabil-
ities for capturing higher-level work�ows or for keeping track of
the operations being performed or any kind of provenance informa-
tion. Their versioning API is based on a notion of �les, and is not
capable of allowing users to reason about data within versions and
the relationships among versions in a holistic manner. On the other
hand, a wide range of analytic packages like SAS, Excel, R, and
Matlab, or data science toolkits such as IPython, Scikit, and Pandas,
are frequently used for performing analysis itself; however, those
lack comprehensive data management or collaboration capabilities.
ProvDB can be seen as providing rich introspection and querying
capabilities those systems lack.

Sharing similar views, two recent projects aim to improve col-
laborative data science work�ows by reducing the cost of metadata
collection and management. LabBook [18], a social data science
notebook, uses a queryable property graph to manage metadata
captured during collaborative analytics and features a web-based
app architecture for analyzing the metadata. However, LabBook
does not treat versioning as a �rst-class construct, and does not
focus on developing passive provenance ingestion mechanisms or
sophisticated querying abstractions as we do here. Ground [8] is a
data context service to manage all the information that informs the
use of data. It has a general data model and architecture to import
from and export to other systems. However, metadata ingestion
and useful high-level query facilities are left to the users.
Lifecycle Management Systems for Machine Learning:Many
systems are being developed for handling di�erent aspects of model
lifecycle management, e.g., general-purpose training systems like
GraphLab, TensorFlow, Parameter Server; systems for accelerat-
ing speci�c modeling tasks (e.g., feature engineering [23], deep
learning [21], model selection [20], etc.). In contrast, our focus is
on the provenance aspect when multiple practitioners collabora-
tively develop a model, and ProvDB can be used as the provenance
management layer for most above systems.
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Figure 1: High-level ProvDB System Architecture

3 PROVDB OVERVIEW

3.1 System Architecture

ProvDB is a stand-alone client-server system, designed to be used
in conjunction with a dataset version control system (DVCS) like
git or DataHub (Fig. 1). The DVCS will handle the actual version
management tasks, including supporting the standard function-
ality, i.e., checkout, commit, merge, etc., and the distributed and
decentralized management of individual repositories.

We envision a number of local DVCS ‘repositories’, each corre-
sponding to a team of practitioners collaborating closely together.
The repository will typically be replicated across a number of ma-
chines as di�erent users ‘check out’ the repository contents to work
locally. Since we leverage git for keeping these in sync, the reposi-
tory contents are available as �les for the users to operate upon;
they can run whichever analysis tools they want on those after
checking them out, even distributed ones like Hadoop or Spark.

A repository consists of a set of versions. A version, identi�ed by
an ID, is immutable and any update to it conceptually results in a
new version with a di�erent version ID (physical data structures
are typically not immutable and the underlying DVCS uses various
strategies for compact storage [2]). The version-level provenance
that captures these processes is maintained as a ‘version graph’, a di-
rected acyclic graph with versions as nodes. Typically, the leaves of
the version graph correspond to di�erent live branches that di�erent
users may be operating upon at the same time. As we discuss in the
next section, ProvDB actually maintains a conceptual ‘work�ow
graph’ with many other types of nodes and edges.

Broadly, the data maintained across the system can be catego-
rized into: (a) raw data that the users can directly access and analyze
including the datasets, analysis scripts, and any derived artifacts
such as trained models, and (b) metadata or provenance information
transparently maintained by the system. Note that, the split design
that we have chosen requires duplication of some information in
the DVCS and ProvDB. We believe it is a small price to pay for the
bene�ts of having a standalone provenance management system.

Data Collection Layer is a thin layer on top of the DVCS that
is used to capture the provenance and metadata information. This
layer needs to support a variety of functionality to make it easy to
collect a large amount of metadata and provenance information,
with minimal overhead to the user (Sec. 3.3). The ProvDB instance
itself is a separate process, and currently uses the Neo4j graph data-
base to store the data; we chose Neo4j because of its support for the
�exible property graph data model, and graph querying functional-
ity out-of-the-box (Sec. 3.2). The stored data can be accessed either
through the Neo4j frontend, or through a visual frontend that we
have built that supports a variety of provenance queries (Sec. 3.4).

3.2 Provenance Data Model

To encompass a large variety of situations, our goal was to have a
�exible data model that re�ects versioning and work�ow pipelines,
and supports addition of arbitrary metadata or provenance infor-
mation. As such, we advocate a ‘schema-later’ approach, where
a �xed ‘base schema’ (Fig. 2(a)) for capturing information about
versions, the di�erent artifacts, and so on, while allowing arbitrary
properties to be added to various entities. We store the conceptual
model physically as a property graph (Fig. 2(c)), primarily to enable
graph traversal queries and visual exploration over the stored in-
formation easily (Sec. 3.4). The data model re�nes the versioning
model proposed in our prior work [3], and di�ers from other similar
ones [10, 18, 24] mainly in the explicit modeling of versions.
Conceptual Data Model: We view a data science project as a
working directory with a set of artifacts (�les), and a develop-
ment lifecycle as a series of derivations (shell commands, edits,
programs) performing create/read/update/delete operations in the
directory. More speci�cally: an artifact is a �le that can be tagged
as belonging to one of three di�erent types: ResultFile, DataFile,
ScriptFile, which helps with formulating appropriate queries. A
version is a checkpoint of the project; in our case, this refers to a
physical commit created via git. ProvDB has explicit versions and
implicit versions; the former are created when a user explicitly issues
commit command, whereas the latter are created at provenance in-
gestion time when the user runs commands in the project directory.
Snapshots are checkpointed versions of an artifact and capture its
evolution lineage as parent relationships. The content of a snapshot
is modeled as records, to allow �ne-grained provenance.

Derivations capture the transformation context to the extent
possible. If a derivation is performed by running a program or a
script, then the execution history is captured along with any argu-
ments. Derivation edges may also be created when ProvDB notices
that one or more artifacts have changed before the transformation
(e.g., an edit in an IDE, or a script ran outside the ProvDB context).

Finally, properties are used to encode any additional informa-
tion about the snapshots or the derivations, as key-value pairs
(where values are often time series or JSON documents themselves).
Provenance ingestion tools (Sec. 3.3) will generate these proper-
ties, which may include any information captured by parsing shell
scripts or analysis scripts themselves. Properties can be statistics
aboutthe snapshots data as well, so that they can be seamlessly
queried. This starts blurring the distinction between data and meta-
data to some extent; we plan to investigate using a more elaborate
data model that more clearly delineates between the two in future.
Physical Property Graph Data Model: We map the conceptual
data model (with the exception of Record) into a property graph
data model. Nodes of the property graph are of types Version, Arti-
fact, etc., whereas the edges capture the relationships (e.g. parent).

Example 3.1. In Fig. 2(b), a user starts an analysis using a script
�le script1 and a data �le data�le1 by copying them to a repository.
She �rst tries out script1 on data�le1, and a result �le result1 with
m records is generated . On inspecting result1, she �nds a number
format issue which she corrects by editing script1 using vim and
running script1 again on data�le1. This a�ects all records in result1.
Assuming ProvDB made a commit at the end of each shell inter-
action, we show the versions, artifacts, snapshots, and derivations.
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Figure 2: Illustration of ProvDB Conceptual Data Model and Physical Property Graph Model

Between the versions, the command is captured as a Derivation,
whose properties would be the arguments (i.e. options, parameters).
If there is change before a derivation, ProvDB detects it and marks
the derivation as missing provenance. In Fig. 2(c), we show the
actual physical property graph. Between artifacts and snapshots,
(e.g. result1 and result s1), the edge has a composition relationship,
while between snapshots, the parent edge is stored across versions.

3.3 Provenance Ingestion

ProvDB captures lifecylce information opportunistically, and fea-
tures a suite of mechanisms that can capture provenance/metadata
for di�erent types of artifacts and derivations. Users can easily
con�gure and add ingestion mechanisms, to change or extend
the ingestion capability. Current ProvDB prototype implemen-
tation includes: (a) a general-purpose UNIX shell-based ingestion
framework, (b) DVCS versioning information importer, (c) user
annotation GUI, and (d) a mechanism called �le views, intended to
both simplify work�ow and aid in �ne-grained provenance capture.
Shell command-based Ingestion Framework: Current ProvDB
prototype is centered around the UNIX commandline shell (e.g.,
bash, zsh, etc). A special command called provdb ingest that
users can pre�x to any other command, and that triggers prove-
nance ingestion. Each run of the command results in creation of
a new implicit version, which allows us to capture the changes at
a �ne granularity. A collection of ingestors is invoked by match-
ing the command against a set of regular expressions, registered
a priori along with the ingestors. ProvDB schedules ingestor to
run before/during/after execution the user command, and expects
the ingestor to return a JSON property graph consisting of a set of
key-value pairs denoting properties of the snapshots or derivations.

A default ingestor handles arbitrary commands by parsing them
following POSIX standard (IEEE 1003.1-2001) to annotate utility,
options, option arguments and operands. For example, mkdir -p
dir is parsed as utility mkdir, option p and operand dir. Concatena-
tions of commands are decomposed and ingested separately, while
a command with pipes is treated as a single command. If an external
tool has been used to make any edits (e.g., a text editor), an implicit
version is created next time provdb ingest is run, and the deriva-
tion information is recorded as missing. ProvDB also supports
several specialized ingestion plugins and con�gurations to cover
important data science work�ows. In particular, it has an ingestor
for the caffe deep learning framework, that not only ingests the
learning hyperparameters from the con�guration �le, but also the

accuracy and loss scores by iteration from the result logging �le. We
are currently working on ingestors for scripts written in popular
data science tools such as scikit-learn [12, 22].
User Annotations: Context metadata, cognitive annotations and
communications are important for collaborative data science [8,
17, 18]. ProvDB GUI allows users to organize, add, and annotate
properties, along with other query facilities. Users can annotate
project properties, such as usage descriptions for collaborations on
artifacts, or notes to explain rationale for a particular derivation. A
user can also annotate a property as parameter and add range/step
to its domains, which turns a derivation into a template and enables
batch run of an experiment. For example, a grid search of a template
derivation on a start snapshot can be con�gured directly in the UI.
Maintaining such user annotations (and �le views discussed next)
as the datasets evolve is a complicated issue in itself [19].
File Views: ProvDB provides a functionality called �le views to
assist dataset transformations and to ingest provenance among data
�les. Analogous to views in relational databases, a �le view de�nes
a virtual �le as a transformation over an existing �le. A �le view
can be de�ned either: (a) as a script or a sequence of commands
(e.g., sort | uniq -c, which is equivalent to an aggregate count
view), or (b) as an SQL query where the input �les are treated as
tables. For instance, the following query counts the rows per label
that a classi�er predicts wrongly comparing with ground truth.
provdb fileview -c -n='results.csv' -q='

select t._c2 as label, count(*) as err_cnt
from {testfile.csv} as t, {predfile.csv} as r
where t._c0 = r._c0 and t._c2 != r._c2 group by t._c2'

The SQL feature is implemented by loading the input �les into an
in-memory sqlite database and executing the query against it.
Instead of creating a view, the same syntax can be used for creating
a new �le instead, saving a user from coding similar functionality.

File views serves as an example of a functionality that makes the
ad hoc process of data science more structured. Aside from making
it easier to track dependencies, SQL-based �le views also enable
capturing record-level provenance by drawing upon techniques
developed over the years for data provenance in databases [4].
Discussion: Currently ProvDB can be used in a command-line en-
vironment. In future work, we plan to investigate ingestion within
other development environments such as di�erent IDEs and impor-
tant apps [16]. We also plan to incorporate support for ingesting
log �les generated in many environments today, and through con-
tinuous monitoring of the artifacts in the working directory.
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3.4 Query and Analysis Facilities

The major data management research challenges in building a sys-
tem like ProvDB revolve around querying, analyzing, and extract-
ing insights from the rich provenance information collected using
the mechanisms described so far. In addition to explanation queries
which look for origins of a piece of data and explorative lifecycle
queries on the property graph, ProvDB enables asking deeper, intro-
spective queries about the data science processes and pipelines, and
formalizing those is a major challenge in itself. ProvDB can also
naturally support monitoring queries, which can be used to automat-
ically detect problems during deployment. We hope that building
the basic infrastructure to collect and expose the information will
allow other researchers and data scientists to start formulating such
questions more easily. Developing a higher-level query language
also remains a major challenge; although we proposed an initial
design of a query language in our prior work [3], it does not support
querying over work�ow derivations or analysis artifacts.
Queries over Version/Work�ow Graph and Properties: In a
collaborative work�ow, provenance queries to identify what revi-
sion and which author last modi�ed a line in an artifact are com-
mon (e.g., git blame). ProvDB allows such queries on the version
graph and supports rich versions queries [3]. Moreover, queries can
be asked at various levels (version, artifact, snapshot, record) on
both the version graph and the work�ow graph, and using prop-
erties associated with the di�erent entities (e.g., details of what
parameters have been used, temporal orders of commands, etc).
In fact, all the information exposed in the property graph can be
directly queried using the Neo4j Cypher query language.

The capability of the queries using properties are primarily lim-
ited by the amount of information that can be automatically in-
gested. Using the current ingestors (Sec. 3.3), such as a program
analysis ingestor for scikit-learn which extracts the scikit-learn APIs
used in a script, and a hyper-parameter and result-table ingestor
for ca�e for deep learning (the hyper-parameter ingestor extracts
experiment parameters from ca�e commands and arguments, while
the results-table ingestor extracts errors and accuracies from train-
ing logs), meaningful queries can be asked, e.g. which scikit-learn
script contain a speci�c sequence of commands; what is the learning
accuracy curve of a deep learning model; enumerate all parameter
combinations that have been tried out for a given learning task, etc.
Shallow vs Deep “Di�” Queries: “Di�” is a �rst-class operator
in ProvDB, and can be used for �nding di�erences at various dif-
ferent levels. Speci�cally, given a pair of nodes (corresponding to
two snapshots) in the property graph, a shallow di� operation, by
default, focuses on the ingested properties of the two snapshots,
which are likely to contain the crucial di�erences in most cases.
It attempts to “join” the two sets of properties as best as it can,
and highlights the di�erences; in case of time-series properties,
it also allows users to generate plots so they can more easily un-
derstand the di�erences. For example, for two result table artifacts
that may represent the outputs of two di�erent runs of the same
script (e.g., model training logs), a line-by-line di� may be useless
because of irrelevant and minor numerical di�erences; however, by
plotting the two sets of results against each other, a user can more

quickly spot important trends (e.g., that a speci�c value of parame-
ter leads to quicker convergence). The shallow di� operator also
allows di�erencing contents of two �les line-by-line if so desired.

A deep di� compares the ancestors of the two target snapshots by
tracing back their derivations to the common ancestor. It aligns the
snapshots along the two paths, and shows the di�erences between
each pair of aligned snapshots. For example, in a prediction task,
a user may have tried out di�erent models or con�gurations to
improve the test accuracy; in ProvDB, she can start from two result
�les, and ask a deep di� query to compare how they are derived.
Record Provenance Queries: Although the ProvDB data model
supports storing �ne-grained record-level provenance information,
it currently does not have an ingestor that generates such data;
we are working on adding several such ingestors, including ones
for SQL-based �le views or transformations, and for common data
cleaning or similar operations where record-level provenance can
be easily inferred. Given such information, record-level provenance
queries are conceptually straightforward. However, the main chal-
lenge is expected to be the large volume of provenance information
as well as e�cient query execution. The utility of these queries
may also be limited because it is di�cult to collect �ne-grained
provenance for many black-box operations (e.g., ML models).
Reasoning about Pipelines: Similar to a work�ow management
system, we de�ne a pipeline to be a sequence of derivation edges.
A pipeline can be annotated by the user by browsing the work�ow
graph and marking the start and the end edges of the pipeline.
Pipelines can also be inferred automatically by the system (e.g., via
pattern mining techniques). ProvDB UI allows a user to browse and
reuse pipelines present in the system; in future, we also plan to add
support for re-invoking an old pipeline on an old artifact to verify
the results, or invoking a pipeline on a di�erent snapshot with
di�erent parameters, or schedule a cron job. Being able to reason
about pipelines has the potential to hugely simplify the lives of data
scientists, by allowing them to learn from others and also helping
them avoid mistakes (e.g., omission of a crucial intermediate step).
Continuous Monitoring or Anomaly Detection: We envision
two main introspection scenarios for this functionality: (a) detecting
any major changes to the properties of an evolving dataset – e.g.,
a large change in the distribution of values in a dataset may be
cause for taking remedial action, (b) when “deploying” an analysis
script or a trained model against live incoming data, keeping track
of how well the model or the script is behaving and catching any
problems as soon as possible (e.g., changing input data properties;
higher error rates than expected). Currently even if systems like
Spark Streaming or Apache Storm can be used to execute a script
against new data in a streaming fashion, there is no built-in support
for the introspection tasks. Newer systems like Google TensorFlow
Serving also facilitate the deployment process, but do not support
introspection. Such introspection can be seen as continuous queries
against streaming provenance information. Currently, ProvDB
supports simple alert queries that can monitor a property on an
evolving artifact through the web GUI; in future iterations, we
plan to support more complex temporal queries (that can monitor
properties across snapshots) and we plan to support executing those
continuously as new versions (implicit or explicit) are checked in.
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(a) Di� Queries in a Managed Deep Learning Repository (b) Cypher Query to Find Related Changes via Derivations
Figure 3: Illustration of ProvDB With a Concrete Prediction Task

Example 3.2. We show a concrete ProvDB query scenario on a
deep learning repository, in which 41 neural networks are created
for a face classi�cation task. The models are enumerated by mimic
modeling practices by varying networks and parameters. In Fig 3(a),
the user �lters modeling artifacts and selects two models (model-0
and 9) using left pane, then issues an introspection query asking
about their di�erences. Using the GUI, the user di�s their ingested
provenance properties from caffe logging �les. The right query
result pane highlights the di�erences in the ingested properties.
The caffe ingestor properties are numerical time series; using the
provided charting tool, the user plots the training loss and accuracy
against the iteration number. From the results, we can see that
model-9 does not train well in the beginning, but ends up with
similar accuracy. To understand why, a deep di� between the two
can be issued in the GUI and complex Cypher queries can be used
as well. In Fig. 3(b), the query �nds previous derivations and shared
snapshots, which are training con�g �les; more introspection can
be done such as �nding changed hyperparameters.

4 CONCLUSION

In this paper, we presented our vision for a system to simplify lifecy-
cle management of ad hoc, collaborative analysis work�ows that are
becoming prevalent in most application domains today. We argued
that a large amount of provenance and metadata information can be
captured passively, and analyzing it in novel ways can immensely
simplify the day-to-day processes undertaken by data analysts. We
have built an initial prototype using git and Neo4j, which provides
a variety of provenance ingestion mechanisms and the ability to
query, analyze, and monitor the captured provenance information.
Our initial experience with using this prototype for a deep learning
work�ow (for a computer vision task) shows that even with limited
functionality, it can simplify the bookkeeping tasks and make it
easy to compare the e�ects of di�erent hyperparameters and neural
network structures. However, many interesting and hard systems
and conceptual challenges remain to be addressed in capturing and
exploiting such information to its fullest extent.
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